

orsopy

[image: _images/orsopy.svg]
 [https://pypi.python.org/pypi/orsopy][image: _images/badge.svg]
 [https://github.com/reflectivity/orsopy/actions/workflows/pytest.yml][image: Documentation Status]
 [https://orsopy.readthedocs.io/en/latest/?version=latest][image: Coverage Level]
 [https://coveralls.io/github/reflectivity/orsopy?branch=main]orsopy is a Python library that implements ORSO functionality, which currently includes the reduced data file format [https://www.reflectometry.org/file_formats/].
The orsopy package is used by a range of data reduction and analysis packages for the writing and reading of reduced reflectometry data.
This data is written following the ORSO defined specification [https://www.reflectometry.org/file_format/specification], enabling a metadata-rich and flexible file to be created.

ORSO [https://www.reflectometry.org] is an open organisation aimed at improving the scientific techniques of neutron and X-ray reflectometry.
In the interest of transparency, all minutes from orsopy developer meetings are available in the Documents [https://orsopy.readthedocs.io/en/latest/documents.html] in the sidebar of this page.
If you are interested in getting involved in developing orsopy, please feel free to contribute [https://orsopy.readthedocs.io/en/latest/contributing.html] or get in touch on the ORSO Slack [https://join.slack.com/t/orso-co/shared_invite/zt-z7p3v89g-~JgCbzcxurQP6ufqdfTCfw] (where there is a channel dedicated to orsopy).

Features

	Reading and writing of ORSO specification reduced reflectivity files [https://orsopy.rtfd.io/en/latest/modules.html#fileio].

Contents:

	Installation

	Usage

	Modules

	Contributing

	Credits

	History

	Documents

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install orsopy, run this command in your terminal:

$ pip install orsopy

This is the preferred method to install orsopy, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for orsopy can be downloaded from the Github repo [https://github.com/reflectivity/orsopy].

You can either clone the public repository:

$ git clone git://github.com/reflectivity/orsopy

Or download the tarball [https://github.com/reflectivity/orsopy/tarball/master]:

$ curl -OJL https://github.com/reflectivity/orsopy/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Usage examples

	Producing metadata rich reduced datasets

Modules

fileio

The role of the fileio module is to enable the creation of and parsing from ORSO reduced data files.
All public classes and functions in the fileio module are available directly from fileio without needing to specify a particular submodule.

	orsopy.fileio.base

	orsopy.fileio.data_source

	orsopy.fileio.reduction

	orsopy.fileio.orso

orsopy.fileio.base

Implementation of the base classes for the ORSO header.

	
orsopy.fileio.base.orsodataclass(cls)

	

	
exception orsopy.fileio.base.ORSOResolveError

	Bases: ValueError

	
class orsopy.fileio.base.Header

	Bases: object

The super class for all of the items in the orso module.

	
property user_data

	

	
classmethod empty()

	Create an empty instance of this item containing
all non-option attributes as None.

	Return type:

	Header

	Returns:

	Empty class.

	
static asdict(header)

	Static method for to_dict().

	Parameters:

	header (Header) – Object to convert to dictionary.

	Return type:

	dict

	Returns:

	Dictionary result.

	
to_dict()

	Produces a clean dictionary of the Header object, removing
any optional attributes with the value None.

	Return type:

	dict

	Returns:

	Cleaned dictionary.

	
to_yaml()

	Return the yaml string for the Header item

	Return type:

	str

	Returns:

	Yaml string

	
yaml_representer(dumper)

	

	
yaml_representer_compact(dumper)

	

	
class orsopy.fileio.base.OrsoDumper(stream, default_style=None, default_flow_style=False, canonical=None, indent=None, width=None, allow_unicode=None, line_break=None, encoding=None, explicit_start=None, explicit_end=None, version=None, tags=None, sort_keys=True)

	Bases: SafeDumper

	
represent_data(data)

	

	
class orsopy.fileio.base.ErrorValue(error_value, error_type=None, value_is=None, distribution=None, comment=None, **user_kwds)

	Bases: Header

Information about errors on a value.

	
error_value: float

	

	
error_type: Optional[Literal['uncertainty', 'resolution']] = None

	

	
value_is: Optional[Literal['sigma', 'FWHM']] = None

	

	
distribution: Optional[Literal['gaussian', 'triangular', 'uniform', 'lorentzian']] = None

	

	
yaml_representer(dumper)

	

	
property sigma

	Return value converted to standard deviation.

The conversion factors can be found in common statistics and experimental physics text books or derived
manually solving the variance definition integral.
(e.g. Dekking, Michel (2005).
A modern introduction to probability and statistics : understanding why and how.
Springer, London, UK:)
Values and some references available on Wikipedia, too.

	
comment: Optional[str] = None

	

	
class orsopy.fileio.base.Value(magnitude, unit=None, error=None, comment=None, **user_kwds)

	Bases: Header

A value or list of values with an optional unit.

	
magnitude: float

	

	
unit: Optional[str] = None

	

	
error: Optional[ErrorValue] = None

	

	
yaml_representer(dumper)

	

	
as_unit(output_unit)

	Returns the value as converted to the given unit.

	
comment: Optional[str] = None

	

	
class orsopy.fileio.base.ComplexValue(real, imag=None, unit=None, error=None, comment=None, **user_kwds)

	Bases: Header

A value or list of values with an optional unit.

	
real: float

	

	
imag: Optional[float] = None

	

	
unit: Optional[str] = None

	

	
error: Optional[ErrorValue] = None

	

	
yaml_representer(dumper)

	

	
as_unit(output_unit)

	Returns the complex value as converted to the given unit.

	
comment: Optional[str] = None

	

	
class orsopy.fileio.base.ValueRange(min, max, unit=None, comment=None, **user_kwds)

	Bases: Header

A range or list of ranges with mins, maxs, and an optional unit.

	
min: float

	

	
max: float

	

	
unit: Optional[str] = None

	

	
yaml_representer(dumper)

	

	
as_unit(output_unit)

	Returns a (min, max) tuple of values as converted to the given unit.

	
comment: Optional[str] = None

	

	
class orsopy.fileio.base.ValueVector(x, y, z, unit=None, error=None, comment=None, **user_kwds)

	Bases: Header

A vector or list of vectors with an optional unit.
For vectors relating to the sample, such as polarisation,
the follow definitions are used.

	Parameters:

	
	x (float) – is defined as parallel to the radiation beam, positive going
with the beam direction.

	y (float) – is defined from the other two based on the right hand rule.

	z (float) – is defined as normal to the sample surface, positive direction
in scattering direction.

	unit (Optional[str]) – SI unit string.

	
x: float

	

	
y: float

	

	
z: float

	

	
unit: Optional[str] = None

	

	
error: Optional[ErrorValue] = None

	

	
yaml_representer(dumper)

	

	
as_unit(output_unit)

	Returns a (x, y, z) tuple of values as converted to the given unit.

	
comment: Optional[str] = None

	

	
class orsopy.fileio.base.Person(name, affiliation, contact=None, comment=None, **user_kwds)

	Bases: Header

Information about a person, including name, affilation(s), and contact
information.

	
name: str

	

	
affiliation: str

	

	
contact: Optional[str] = None

	

	
comment: Optional[str] = None

	

	
class orsopy.fileio.base.Column(name, unit=None, physical_quantity=None, comment=None, **user_kwds)

	Bases: Header

Information about a data column.

	
name: str

	

	
unit: Optional[str] = None

	

	
physical_quantity: Optional[str] = None

	

	
yaml_representer(dumper)

	

	
comment: Optional[str] = None

	

	
class orsopy.fileio.base.ErrorColumn(error_of, error_type=None, value_is=None, distribution=None, comment=None, **user_kwds)

	Bases: Header

Information about a data column.

	
error_of: str

	

	
error_type: Optional[Literal['uncertainty', 'resolution']] = None

	

	
value_is: Optional[Literal['sigma', 'FWHM']] = None

	

	
distribution: Optional[Literal['gaussian', 'triangular', 'uniform', 'lorentzian']] = None

	

	
yaml_representer(dumper)

	

	
property name

	A convenience property to allow programs to get a valid name attribute for any column.

	
property to_sigma

	The multiplicative factor needed to convert a FWHM to sigma.

The conversion factors can be found in common statistics and experimental physics text books or derived
manually solving the variance definition integral.
(e.g. Dekking, Michel (2005).
A modern introduction to probability and statistics : understanding why and how.
Springer, London, UK:)
Values and some references available on Wikipedia, too.

	
comment: Optional[str] = None

	

	
class orsopy.fileio.base.File(file, timestamp=None, comment=None, **user_kwds)

	Bases: Header

A file with file path and a last modified timestamp.

	
file: str

	

	
timestamp: Optional[datetime] = None

	

	
comment: Optional[str] = None

	

	
exception orsopy.fileio.base.NotOrsoCompatibleFileError

	Bases: ValueError

orsopy.fileio.data_source

Implementation of the data_source for the ORSO header.

	
class orsopy.fileio.data_source.Experiment(title, instrument, start_date, probe, facility=None, proposalID=None, doi=None, comment=None, **user_kwds)

	Bases: Header

A definition of the experiment performed.

	Parameters:

	
	title (str) – Proposal or project title.

	instrument (str) – Reflectometer identifier.

	start_date (datetime) – Start date for the experiment.

	probe (Literal['neutron', 'x-ray']) – Radiation probe, either 'neutron' or
'x-ray'.

	facility (Optional[str]) – Facility where the experiment was performed.

	proposalID (Optional[str]) – Identifier for experiment at a facility.

	doi (Optional[str]) – Digital object identifier for the experiment, possibly
provided by the facility.

	
title: str

	

	
instrument: str

	

	
start_date: datetime

	

	
probe: Literal['neutron', 'x-ray']

	

	
facility: Optional[str] = None

	

	
proposalID: Optional[str] = None

	

	
doi: Optional[str] = None

	

	
comment: Optional[str] = None

	

	
class orsopy.fileio.data_source.Sample(name, category=None, composition=None, description=None, size=None, environment=None, sample_parameters=None, model=None, comment=None, **user_kwds)

	Bases: Header

A description of the sample measured.

	Parameters:

	
	name (str) – An identified for the individual sample or the subject and
state being measured.

	category (Optional[str]) – Simple sample description, front (beam side) / back,
each side should be one of 'solid/liquid',
'liquid/solid', 'gas/liquid',
'liquid/liquid', 'solid/gas', 'gas/solid'.

	composition (Optional[str]) – Notes on the nominal composition of the sample e.g.
Si | SiO2 (20 angstrom) | Fe (200 angstrom) |
air (beam side).

	description (Optional[str]) – Further details of the sample, e.g. size.

	size (Optional[ValueVector]) – Sample size in x, y, z direction, where z is parallel to the surface normal
and x is along the beam direction (important for footprint correction).

	environment (Optional[List[str]]) – Name of the sample environment device(s).

	sample_parameters (Optional[Dict[str, Union[Value, ValueRange, ValueVector, ComplexValue]]]) – Dictionary of sample parameters.

	
name: str

	

	
category: Optional[str] = None

	

	
composition: Optional[str] = None

	

	
description: Optional[str] = None

	

	
size: Optional[ValueVector] = None

	

	
environment: Optional[List[str]] = None

	

	
sample_parameters: Optional[Dict[str, Union[Value, ValueRange, ValueVector, ComplexValue]]] = None

	

	
model: Optional[SampleModel] = None

	

	
comment: Optional[str] = None

	

	
class orsopy.fileio.data_source.Polarization(value)

	Bases: str, Enum

Polarization of the beam used for the reflectivity.

Neutrons:
The first symbol indicates the magnetisation direction of the incident
beam, the second symbol indicates the direction of the scattered
beam. If either polarization or analysis are not employed the
symbol is replaced by “o”.

X-rays:
Uses the conventional names pi, sigma, left and right. In experiments
with polarization analysis the incident and outgoing polarizations
are separated with an underscore “_”.

	
unpolarized = 'unpolarized'

	

	
po = 'po'

	

	
mo = 'mo'

	

	
op = 'op'

	

	
om = 'om'

	

	
mm = 'mm'

	

	
mp = 'mp'

	

	
pm = 'pm'

	

	
pp = 'pp'

	

	
pi = 'pi'

	

	
sigma = 'sigma'

	

	
left = 'left'

	

	
right = 'right'

	

	
pi_pi = 'pi_pi'

	

	
sigma_sigma = 'sigma_sigma'

	

	
pi_sigma = 'pi_sigma'

	

	
sigma_pi = 'sigma_pi'

	

	
yaml_representer(dumper)

	

	
class orsopy.fileio.data_source.InstrumentSettings(incident_angle, wavelength, polarization=None, configuration=None, comment=None, **user_kwds)

	Bases: Header

Settings associated with the instrumentation.

	Parameters:

	
	incident_angle (Union[Value, ValueRange]) – Angle (range) of incidence.

	wavelength (Union[Value, ValueRange]) – Neutron/x-ray wavelenght (range).

	polarization (Union[Polarization, ValueVector, None]) – Radiation polarization as one of
'unpolarized', 'p', 'm', 'pp',
'pm', 'mp', 'mm', or a
orsopy.fileio.base.ValueVector.

	configuration (Optional[str]) – Description of the instreument configuration (full
polarized/liquid surface/etc).

	
incident_angle: Union[Value, ValueRange]

	

	
wavelength: Union[Value, ValueRange]

	

	
polarization: Union[Polarization, ValueVector, None] = None

	

	
configuration: Optional[str] = None

	

	
comment: Optional[str] = None

	

	
class orsopy.fileio.data_source.Measurement(instrument_settings, data_files, additional_files=None, scheme=None, comment=None, **user_kwds)

	Bases: Header

The measurement elements for the header.

	Parameters:

	
	instrument_settings (InstrumentSettings) – Instrumentation details.

	data_files (List[Union[File, str]]) – Raw data files produced in the measurement.

	references – Raw reference files used in the reduction.

	scheme (Optional[Literal['angle- and energy-dispersive', 'angle-dispersive', 'energy-dispersive']]) – Measurement scheme (one of 'angle-dispersive',
'energy-dispersive'/'angle- and energy-dispersive').

	
instrument_settings: InstrumentSettings

	

	
data_files: List[Union[File, str]]

	

	
additional_files: Optional[List[Union[File, str]]] = None

	

	
scheme: Optional[Literal['angle- and energy-dispersive', 'angle-dispersive', 'energy-dispersive']] = None

	

	
comment: Optional[str] = None

	

	
class orsopy.fileio.data_source.DataSource(owner, experiment, sample, measurement, comment=None, **user_kwds)

	Bases: Header

The data_source object definition.

	Parameters:

	
	owner (Person) – This refers to the actual owner of the data set, i.e. the
main proposer or the person doing the measurement on a lab
reflectometer.

	experiment (Experiment) – Details of the experimental.

	sample (Sample) – Sample information.

	measurement (Measurement) – Measurement specifics.

	
owner: Person

	

	
experiment: Experiment

	

	
sample: Sample

	

	
measurement: Measurement

	

	
comment: Optional[str] = None

	

orsopy.fileio.reduction

The reduction elements for the ORSO header

	
class orsopy.fileio.reduction.Software(name, version=None, platform=None, comment=None, **user_kwds)

	Bases: Header

Software description.

	Parameters:

	
	name (str) – Software name.

	version (Optional[str]) – Version identified for the software.

	platform (Optional[str]) – Operating system.

	
name: str

	

	
version: Optional[str] = None

	

	
platform: Optional[str] = None

	

	
yaml_representer(dumper)

	

	
comment: Optional[str] = None

	

	
class orsopy.fileio.reduction.Reduction(software, timestamp=None, creator=None, corrections=None, computer=None, call=None, script=None, binary=None, comment=None, **user_kwds)

	Bases: Header

A description of the reduction that has been performed.

	Parameters:

	
	software (Software) – Software used for reduction.

	timestamp (Optional[datetime]) – Datetime of reduced file creation.

	creator (Optional[Person]) – The person or routine who created the reduced file.

	corrections (Optional[List[str]]) – A list of the corrections that have been performed.

	computer (Optional[str]) – Name of the reduction machine.

	call (Optional[str]) – Command line call or similar.

	script (Optional[str]) – Path to reduction script or notebook.

	binary (Optional[str]) – Path to full reduction information file.

	
software: Software

	

	
timestamp: Optional[datetime] = None

	

	
creator: Optional[Person] = None

	

	
corrections: Optional[List[str]] = None

	

	
computer: Optional[str] = None

	

	
call: Optional[str] = None

	

	
script: Optional[str] = None

	

	
binary: Optional[str] = None

	

	
comment: Optional[str] = None

	

orsopy.fileio.orso

Implementation of the top level class for the ORSO header.

	
class orsopy.fileio.orso.Orso(data_source, reduction, columns, data_set=None, **user_data)

	Bases: Header

The Orso object collects the necessary metadata.

	Parameters:

	
	data_source (DataSource) – Information about the origin and ownership of
the raw data.

	reduction (Reduction) – Details of the data reduction that has been
performed. The content of this section should contain enough
information to rerun the reduction.

	columns (List[Union[Column, ErrorColumn]]) – Information about the columns of data that will
be contained in the file.

	data_set (Union[int, str, None]) – An identifier for the data set, i.e. if there is
more than one data set in the object.

	
data_source: DataSource

	

	
reduction: Reduction

	

	
columns: List[Union[Column, ErrorColumn]]

	

	
data_set: Union[int, str, None] = None

	

	
classmethod empty()

	Create an empty instance of the ORSO header with
all non-optional attributes as None.

	Return type:

	Orso

	Returns:

	Empty Orso class, within minimum required columns

	
property user_data

	

	
column_header()

	An information string that explains what each of the columns
in a dataset corresponds to.

	Return type:

	str

	Returns:

	Explanatory string.

	
from_difference(other_dict)

	Constructs another Orso instance from self, and a dict
containing updated header information.

	Parameters:

	other_dict (dict) – Contains updated header information.

	Return type:

	Orso

	Returns:

	A new Orso object constructed from self, and the
updated header information.

	
to_difference(other)

	A dictionary containing the difference in header information between
two Orso objects.

	Parameters:

	other (Orso) – Other header to diff with.

	Return type:

	dict

	Returns:

	Dictionary of the header information difference.

	
to_dict()

	Adds the user data to the returned dictionary.

	
comment: Optional[str] = None

	

	
class orsopy.fileio.orso.OrsoDataset(info, data)

	Bases: object

	Parameters:

	
	info (Orso) – The header information for the reflectivity measurement

	data (Any) – The numerical data associated with the reflectivity
measurement. The data has shape (npnts, ncols).

	Raises:

	ValueError – When ncols != len(self.info.columns).

	
info: Orso

	

	
data: Any

	

	
header()

	The header string for the ORSO file.

	Return type:

	str

	Returns:

	Header string.

	
diff_header(other)

	Return a header string that only contains changes to other
OrsoDataset ensure that data_set is the first entry.

	Parameters:

	other (OrsoDataset) – Other OrsoDataset to compare against.

	Return type:

	str

	Returns:

	Header string with only changes.

	
save(fname)

	Save the OrsoDataset.

	Parameters:

	fname (Union[TextIO, str]) – The file name to save to.

	
orsopy.fileio.orso.save_orso(datasets, fname, comment=None, data_separator='')

	Saves an ORSO file. Each of the datasets must have a unique
OrsoDataset.info.data_set attribute. If that attribute is not
set, it is given an integer value corresponding to it’s position
in the list.

	Parameters:

	
	datasets (List[OrsoDataset]) – List of OrsoDataset to save into the Orso file.

	fname (Union[TextIO, str]) – The file name to save to.

	comment (Optional[str]) – Comment to write at the top of Orso file.

	data_separator (str) – Optinal string of newline characters to separate multiple datasets.

	Raises:

	ValueError – If the OrsoDataset.info.data_set
values are not unique.

	Return type:

	None

	
orsopy.fileio.orso.load_orso(fname)

	
	Parameters:

	fname (Union[TextIO, str]) – The Orso file to load.

	Return type:

	List[OrsoDataset]

	Returns:

	OrsoDataset objects for each dataset contained
within the ORT file.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/reflectivity/orsopy/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

orsopy could always use more documentation, whether as part of the
official orsopy docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/reflectivity/orsopy/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up orsopy for local development.

	Fork the orsopy repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/orsopy.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv orsopy
$ cd orsopy/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, auto format the code and check that your changes pass the unit
tests and confirms to PEP 8:

$ black -l 120 orsopy tests
$ isort -l 120 --lbt 1 orsopy tests
$ flake8 --max-line-length=120 --ignore=F401,W503,E203 --count --show-source --statistics orsopy tests
$ pytest

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request of your feature branch against the main branch of the orsopy repository,
check that it meets these guidelines:

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

1. The pull request should include tests for the new functionality. Run the tests in your local machine with pytest.
3. The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. To make sure that the tests pass

for all supported Python versions, you can first create a pull
request of your feauture branch against the main branch _of your forked repository_. If the Github actions
pass, it is highly likely that the GitHub actions will also pass for the pull request against the main branch
of the orsopy repository.

Tips

To run a subset of tests:

$ pytest tests.test_orsopy

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

GitHub actions will then deploy to PyPI if tests pass.

Credits

Contributors

	Andrew R. McCluskey <andrew.mccluskey@ess.eu>

	Andrew R. J. Nelson <andrew.nelson@ansto.gov.au>

	Artur G. Glavic <artur.glavic@psi.ch>

	Brian B. Maranville <brian.maranville@nist.gov>

History

1.1.0 (2023-02-20)

	Introduction of simple model language that can be used to describe
sample structures. The module orsopy.fileio.model_language is used to implement
and parse the model language.
See https://www.reflectometry.org/projects/simple_model for specifications.
Sample model examples can be found in the examples folder together
with scripts using the orsopy module to parse and plot the data.

	Add polarization channels for x-ray experiments

	Implement ErrorValue class for optional description of errors
on values within the file header.

	Update of .ort standard according to discussions with community.
(E.g. rename of column attribute “dimension” to “physical_quantity”)

1.0.1 (2022-06-28)

	Fix bug that did allow some dictionary type values to be created in Sample.

	Update the schema files for released .ort standard.

	Sample.sample_parameters keys to be strings and values restricted to
Value, ValueRange, ValueVector or ComplexValue.

	Add as_unit method to value classes that uses the pint library to convert
values to supplied unit automatically.

1.0.0 (2022-06-10)

	ORSO general assembly has voted to release the first version of orsopy together with the
text representation of the text file (.ort) specification.
See https://www.reflectometry.org/workshops/workshop_2022/

0.1.1 (2022-06-08)

	Fix missing data files in distribution

0.1.0 (2022-05-19)

	Revise .ort file header speicifcation according to ORSO discussions.

	Implement option for automatic unit conversion based on pint library

	Improve yaml export to support compact on-line layout for e.g. Value

	Add a ErrorColumn for clear separation between data and error columns
and allow specification of type/distribution of error with conversion
factors to get standard deviation (sigma)

	Add a ComplexValue class

	Fix some type conversions where e.g. lists have been converted to str

0.0.5 (2022-02-04)

	Merge the slddb package into orsopy for simple query of the database.
SLD db will transition to orsopy for its backend.

0.0.4 (2022-01-19)

	Fix a bug prventing usage of fileio on python >=3.10.1 due to changes in dataclasses internal API

	Replace the metaclass implementation by a decorator behaving similar to dataclass

	Add meeting minutes documenting ORSO decisions

	Define documentation how to auto-format code and execute on source

	More documentation improvements

0.0.3 (2021-11-14)

	Implement user_data from custom keyword arguments

	Improvements to documentation

	Backport to python 3.6 and 3.7

	Allow user defined spaces between multiple datasets

0.0.2 (2021-10-08)

	Integration of PyPI with Github build system

0.0.1 (2021-10-08)

	First release on PyPI as alpha version.

Documents

In the interest of transparency, here we will host minutes of developer meetings.
This should serve as an achieve of why particular decisions where made and when.

Meeting minutes

	2021-11-30

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 orsopy	

 	
 	
 orsopy.fileio.base	

 	
 	
 orsopy.fileio.data_source	

 	
 	
 orsopy.fileio.orso	

 	
 	
 orsopy.fileio.reduction	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	additional_files (orsopy.fileio.data_source.Measurement attribute)

 	affiliation (orsopy.fileio.base.Person attribute)

 	as_unit() (orsopy.fileio.base.ComplexValue method)

 	(orsopy.fileio.base.Value method)

 	(orsopy.fileio.base.ValueRange method)

 	(orsopy.fileio.base.ValueVector method)

 	
 	asdict() (orsopy.fileio.base.Header static method)

B

 	
 	binary (orsopy.fileio.reduction.Reduction attribute)

C

 	
 	call (orsopy.fileio.reduction.Reduction attribute)

 	category (orsopy.fileio.data_source.Sample attribute)

 	Column (class in orsopy.fileio.base)

 	column_header() (orsopy.fileio.orso.Orso method)

 	columns (orsopy.fileio.orso.Orso attribute)

 	comment (orsopy.fileio.base.Column attribute)

 	(orsopy.fileio.base.ComplexValue attribute)

 	(orsopy.fileio.base.ErrorColumn attribute)

 	(orsopy.fileio.base.ErrorValue attribute)

 	(orsopy.fileio.base.File attribute)

 	(orsopy.fileio.base.Person attribute)

 	(orsopy.fileio.base.Value attribute)

 	(orsopy.fileio.base.ValueRange attribute)

 	(orsopy.fileio.base.ValueVector attribute)

 	(orsopy.fileio.data_source.DataSource attribute)

 	(orsopy.fileio.data_source.Experiment attribute)

 	(orsopy.fileio.data_source.InstrumentSettings attribute)

 	(orsopy.fileio.data_source.Measurement attribute)

 	(orsopy.fileio.data_source.Sample attribute)

 	(orsopy.fileio.orso.Orso attribute)

 	(orsopy.fileio.reduction.Reduction attribute)

 	(orsopy.fileio.reduction.Software attribute)

 	
 	ComplexValue (class in orsopy.fileio.base)

 	composition (orsopy.fileio.data_source.Sample attribute)

 	computer (orsopy.fileio.reduction.Reduction attribute)

 	configuration (orsopy.fileio.data_source.InstrumentSettings attribute)

 	contact (orsopy.fileio.base.Person attribute)

 	corrections (orsopy.fileio.reduction.Reduction attribute)

 	creator (orsopy.fileio.reduction.Reduction attribute)

D

 	
 	data (orsopy.fileio.orso.OrsoDataset attribute)

 	data_files (orsopy.fileio.data_source.Measurement attribute)

 	data_set (orsopy.fileio.orso.Orso attribute)

 	data_source (orsopy.fileio.orso.Orso attribute)

 	DataSource (class in orsopy.fileio.data_source)

 	
 	description (orsopy.fileio.data_source.Sample attribute)

 	diff_header() (orsopy.fileio.orso.OrsoDataset method)

 	distribution (orsopy.fileio.base.ErrorColumn attribute)

 	(orsopy.fileio.base.ErrorValue attribute)

 	doi (orsopy.fileio.data_source.Experiment attribute)

E

 	
 	empty() (orsopy.fileio.base.Header class method)

 	(orsopy.fileio.orso.Orso class method)

 	environment (orsopy.fileio.data_source.Sample attribute)

 	error (orsopy.fileio.base.ComplexValue attribute)

 	(orsopy.fileio.base.Value attribute)

 	(orsopy.fileio.base.ValueVector attribute)

 	error_of (orsopy.fileio.base.ErrorColumn attribute)

 	
 	error_type (orsopy.fileio.base.ErrorColumn attribute)

 	(orsopy.fileio.base.ErrorValue attribute)

 	error_value (orsopy.fileio.base.ErrorValue attribute)

 	ErrorColumn (class in orsopy.fileio.base)

 	ErrorValue (class in orsopy.fileio.base)

 	Experiment (class in orsopy.fileio.data_source)

 	experiment (orsopy.fileio.data_source.DataSource attribute)

F

 	
 	facility (orsopy.fileio.data_source.Experiment attribute)

 	File (class in orsopy.fileio.base)

 	
 	file (orsopy.fileio.base.File attribute)

 	from_difference() (orsopy.fileio.orso.Orso method)

H

 	
 	Header (class in orsopy.fileio.base)

 	
 	header() (orsopy.fileio.orso.OrsoDataset method)

I

 	
 	imag (orsopy.fileio.base.ComplexValue attribute)

 	incident_angle (orsopy.fileio.data_source.InstrumentSettings attribute)

 	info (orsopy.fileio.orso.OrsoDataset attribute)

 	
 	instrument (orsopy.fileio.data_source.Experiment attribute)

 	instrument_settings (orsopy.fileio.data_source.Measurement attribute)

 	InstrumentSettings (class in orsopy.fileio.data_source)

L

 	
 	left (orsopy.fileio.data_source.Polarization attribute)

 	
 	load_orso() (in module orsopy.fileio.orso)

M

 	
 	magnitude (orsopy.fileio.base.Value attribute)

 	max (orsopy.fileio.base.ValueRange attribute)

 	Measurement (class in orsopy.fileio.data_source)

 	measurement (orsopy.fileio.data_source.DataSource attribute)

 	min (orsopy.fileio.base.ValueRange attribute)

 	mm (orsopy.fileio.data_source.Polarization attribute)

 	mo (orsopy.fileio.data_source.Polarization attribute)

 	
 	model (orsopy.fileio.data_source.Sample attribute)

 	
 module

 	orsopy.fileio.base

 	orsopy.fileio.data_source

 	orsopy.fileio.orso

 	orsopy.fileio.reduction

 	mp (orsopy.fileio.data_source.Polarization attribute)

N

 	
 	name (orsopy.fileio.base.Column attribute)

 	(orsopy.fileio.base.ErrorColumn property)

 	(orsopy.fileio.base.Person attribute)

 	(orsopy.fileio.data_source.Sample attribute)

 	(orsopy.fileio.reduction.Software attribute)

 	
 	NotOrsoCompatibleFileError

O

 	
 	om (orsopy.fileio.data_source.Polarization attribute)

 	op (orsopy.fileio.data_source.Polarization attribute)

 	Orso (class in orsopy.fileio.orso)

 	orsodataclass() (in module orsopy.fileio.base)

 	OrsoDataset (class in orsopy.fileio.orso)

 	OrsoDumper (class in orsopy.fileio.base)

 	
 orsopy.fileio.base

 	module

 	
 	
 orsopy.fileio.data_source

 	module

 	
 orsopy.fileio.orso

 	module

 	
 orsopy.fileio.reduction

 	module

 	ORSOResolveError

 	owner (orsopy.fileio.data_source.DataSource attribute)

P

 	
 	Person (class in orsopy.fileio.base)

 	physical_quantity (orsopy.fileio.base.Column attribute)

 	pi (orsopy.fileio.data_source.Polarization attribute)

 	pi_pi (orsopy.fileio.data_source.Polarization attribute)

 	pi_sigma (orsopy.fileio.data_source.Polarization attribute)

 	platform (orsopy.fileio.reduction.Software attribute)

 	
 	pm (orsopy.fileio.data_source.Polarization attribute)

 	po (orsopy.fileio.data_source.Polarization attribute)

 	Polarization (class in orsopy.fileio.data_source)

 	polarization (orsopy.fileio.data_source.InstrumentSettings attribute)

 	pp (orsopy.fileio.data_source.Polarization attribute)

 	probe (orsopy.fileio.data_source.Experiment attribute)

 	proposalID (orsopy.fileio.data_source.Experiment attribute)

R

 	
 	real (orsopy.fileio.base.ComplexValue attribute)

 	Reduction (class in orsopy.fileio.reduction)

 	
 	reduction (orsopy.fileio.orso.Orso attribute)

 	represent_data() (orsopy.fileio.base.OrsoDumper method)

 	right (orsopy.fileio.data_source.Polarization attribute)

S

 	
 	Sample (class in orsopy.fileio.data_source)

 	sample (orsopy.fileio.data_source.DataSource attribute)

 	sample_parameters (orsopy.fileio.data_source.Sample attribute)

 	save() (orsopy.fileio.orso.OrsoDataset method)

 	save_orso() (in module orsopy.fileio.orso)

 	scheme (orsopy.fileio.data_source.Measurement attribute)

 	script (orsopy.fileio.reduction.Reduction attribute)

 	
 	sigma (orsopy.fileio.base.ErrorValue property)

 	(orsopy.fileio.data_source.Polarization attribute)

 	sigma_pi (orsopy.fileio.data_source.Polarization attribute)

 	sigma_sigma (orsopy.fileio.data_source.Polarization attribute)

 	size (orsopy.fileio.data_source.Sample attribute)

 	Software (class in orsopy.fileio.reduction)

 	software (orsopy.fileio.reduction.Reduction attribute)

 	start_date (orsopy.fileio.data_source.Experiment attribute)

T

 	
 	timestamp (orsopy.fileio.base.File attribute)

 	(orsopy.fileio.reduction.Reduction attribute)

 	title (orsopy.fileio.data_source.Experiment attribute)

 	to_dict() (orsopy.fileio.base.Header method)

 	(orsopy.fileio.orso.Orso method)

 	
 	to_difference() (orsopy.fileio.orso.Orso method)

 	to_sigma (orsopy.fileio.base.ErrorColumn property)

 	to_yaml() (orsopy.fileio.base.Header method)

U

 	
 	unit (orsopy.fileio.base.Column attribute)

 	(orsopy.fileio.base.ComplexValue attribute)

 	(orsopy.fileio.base.Value attribute)

 	(orsopy.fileio.base.ValueRange attribute)

 	(orsopy.fileio.base.ValueVector attribute)

 	
 	unpolarized (orsopy.fileio.data_source.Polarization attribute)

 	user_data (orsopy.fileio.base.Header property)

 	(orsopy.fileio.orso.Orso property)

V

 	
 	Value (class in orsopy.fileio.base)

 	value_is (orsopy.fileio.base.ErrorColumn attribute)

 	(orsopy.fileio.base.ErrorValue attribute)

 	
 	ValueRange (class in orsopy.fileio.base)

 	ValueVector (class in orsopy.fileio.base)

 	version (orsopy.fileio.reduction.Software attribute)

W

 	
 	wavelength (orsopy.fileio.data_source.InstrumentSettings attribute)

X

 	
 	x (orsopy.fileio.base.ValueVector attribute)

Y

 	
 	y (orsopy.fileio.base.ValueVector attribute)

 	yaml_representer() (orsopy.fileio.base.Column method)

 	(orsopy.fileio.base.ComplexValue method)

 	(orsopy.fileio.base.ErrorColumn method)

 	(orsopy.fileio.base.ErrorValue method)

 	(orsopy.fileio.base.Header method)

 	(orsopy.fileio.base.Value method)

 	(orsopy.fileio.base.ValueRange method)

 	(orsopy.fileio.base.ValueVector method)

 	(orsopy.fileio.data_source.Polarization method)

 	(orsopy.fileio.reduction.Software method)

 	
 	yaml_representer_compact() (orsopy.fileio.base.Header method)

Z

 	
 	z (orsopy.fileio.base.ValueVector attribute)

Usage

The easiest way to use orsopy.fileio (the module of orsopy that includes file reading and writing) to produce metadata-rich .ort reduced reflectometry files involves integrating this into your data reduction workflow.
Early in the workflow, the orsopy.fileio should be imported and an empty orsopy.fileio.orso.Orso header object (here we also import numpy which will be used later).

import numpy as np
from orsopy import fileio

header = fileio.orso.Orso.empty()

Having created the empty header object we can start to populate the appropriate components of it.
It is generally a good idea to populate the components as particular steps occur in the reduction process.
For example, if we want to identify the probing radiation as neutrons, we include this as follows.

header.data_source.experiment.probe = 'neutrons'

Full details of the different components that can be populated can be found in the documentation here or in the file format specification [https://www.reflectometry.org/file_format/specification].
Note that this specification includes information regarding the required and optional components to be included for a file to be considered a valid .ort file.
It is not possible to write a .ort file without defining the columns present in the dataset, in this example we will have four columns of data, namely q, R, dR and dq (the final column is a description of the resolution function).
Columns are defined as follows, using the orsopy.fileio.base.Column and orsopy.fileio.base.ErrorColumn class objects (note that there are other base classes that can be used for a variety of objects).

q_column = fileio.base.Column(name='Qz', unit='1/angstrom', physical_quantity='wavevector transfer')
r_column = fileio.base.Column(name='R', unit=None, physical_quantity='reflectivity')
dr_column = fileio.base.ErrorColumn(error_of='R', error_type='uncertainty', value_is='sigma')
dq_column = fileio.base.ErrorColumn(error_of='Qz', error_type='resolution', value_is='sigma')

header.columns = [q_column, r_column, dr_column, dq_column]

Any required metadata that is not included in the head will be written in the file as containing null.
Having populated the metadata, we can now ensure that the metadata is correct with the following,

correct_header = fileio.orso.Orso(**header.to_dict())

This will produce a new object, if the metadata is correct.

Now, we then want to assign the data that we want to write (this will be after your data reduction has been performed).
This is achieved by producing a fileio.orso.OrsoDataset object, which takes the header and the relevant data columns (below these are q, R, dR, and dq) as inputs.

dataset = fileio.orso.OrsoDataset(info=header, data=np.array([q, R, dR, dq]).T)

The dataset can then be saved with the following function, where 'my_file.ort' is the name for the file to be saved under.

fileio.orso.save_orso(datasets=[dataset], fname='my_file.ort')

Note that if you want to save more than one dataset in a single file, this can be achieved by including these in the list that is passed to this function.

Developer Meeting 2021-11-31

Present: Andrew Caruana (AC), Artur Glavic (AG), Brian Maranville (BM), Andrew McCluskey (minutes author, AM)), and Andrew Nelson (AN).

Apologies: Max Skoda and Jochen Stahn (sound not working on zoom).

Minutes

	Should we bring slddb (slddb link [https://github.com/reflectivity/slddb]) into the main orsopy package and if so how should this be achieved?

	The original purpose of orsopy is a place for all code related to ORSO packages, not just to serve the fileio functionality.
However, it is important to be careful in future when selecting what should and should not be included in the package.

	There was a discussion regarding the differences between slddb and the periodictable package.
AG noted that the primary purpose of slddb is to be a database for scattering length densities which is the maiin distinction.
Additionally, AG identified the value to packaging slddb within orsopy that analysis packages would only require a single dependency to access the benefits of both.

	The importance of not adding a database to the orsopy package was raised by BM, however, AG pointed out that the Python package for accessing the database as already well divorced from the database.
This removed BM’s original worries regarding merging the projects.

	AN commented that it is important to be clear on the process that would change the value of a member of the database.
It was suggested that the documentation on this process which is present on the slddb web interface about [https://slddb.esss.dk/slddb/about] page, could be mirrored in the orsopy documentation.

	It was broadly agreed that bringing the slddb python code into orsopy was a good idea and it should be done by adding the package as a second submodule, i.e. orsopy.slddb.

	Should there be a standard formatting that we agree to in orsopy and if so what should the rules be?

	AN introduced the motivation for collaborative projects towards having a common code style (via formatting rules).

	It was broadly agreed that a common style is beneficial, however, AG would like to see it applied in a soft fashion, i.e. a pull request does not fail for the wrong style (this could be offputting to new contributors).

	AN and AM both felt strongly that incorrectly formatted could should not be able to be merged, however, agree that it should be clear why the tests have failed.

	AC and AG both noted that there should be documentation explaining how to get autoformatter working in common IDEs (i.e. PyCharm and VSCode).

	There was agreement that we can try using black autoformatting with a line length of 120.

	How should we manage releases?

	There was an initial clarification of the difference between versions of orsopy the Python package and the ORSO file format.
It was made clear that these are distinct, i.e. a version number bump in orsopy is not the same as a change to the file format version.

	Initially there was the suggestion of releasing with every PR, however it was worried that this might have a saturation effect.

	AM suggested that when a given developer feel that a new micro-version increment is necessary, they should open a PR containing solely a bump to the version number and a complete update of the CHANGELOG.
Then the discussion in this PR will focus on (1) if a new release is necessary and (2) if the CHANGELOG is upto date.
This approach will also allow new features that someone would like in a given release (i.e. in a another PR that is in review) to be expedited if necessary.

	This process was generally seen as acceptable and should be implemented, and more importantly documented.

	General governance

	AM raised the question of if we should include code review and approval requirements on pull requests.
It was felt that currently this should not be introduced, as so far we are working in a rather dynamic fashion and this could be limited, furthermore we have been polite so far with asking for code review when it is necessary.
However, it was accepted that once stable, code review should be required.

	AN raised the issue of “best practice” for contributing (i.e. forking the repo and working on a feature branch there).
This is currently mentioned in the contributing guidelines [https://github.com/reflectivity/orsopy/blob/main/CONTRIBUTING.rst] but these should be improved to include more information, i.e. AC would like an easy reminder for “how to catch up a fork”.

	BM asked about who was an admin on the PyPI page, currently this is just AM and AG.
However, anyone is welcome.

	BM also raised (after the fact, https://github.com/reflectivity/orsopy/pull/63) the importance of not using force push except in extraordinary circumstances.
This has been supported by AN and should be included in the contributing guidelines.

Actions

	Move the slddb code to the orsopy repository (AG).

	Mirror the relevant documentation for finding problems in the slddb in the orsopy documentation (AG).

	Add configuration for black to the orsopy repository (AM)

	Add format checking to the CI scripts, ideally in a way that it is clear how to resolve problems (AM)

	Add documentation to orsopy making clear the different between orsopy version and the file format version.

	Document process associated with releases (AM)

	Improving the contributing guidelines to be more accessible to new developers and link from readthedocs page (AM)

	Contact AM or AG if you want to be an admin on the PyPI page (all)

	Add a comment about not using force push in the contributing guidelines.

 nav.xhtml

 Table of Contents

 		
 orsopy

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Usage examples

 		
 Modules

 		
 fileio

 		
 orsopy.fileio.base

 		
 orsopy.fileio.data_source

 		
 orsopy.fileio.reduction

 		
 orsopy.fileio.orso

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Contributors

 		
 History

 		
 1.1.0 (2023-02-20)

 		
 1.0.1 (2022-06-28)

 		
 1.0.0 (2022-06-10)

 		
 0.1.1 (2022-06-08)

 		
 0.1.0 (2022-05-19)

 		
 0.0.5 (2022-02-04)

 		
 0.0.4 (2022-01-19)

 		
 0.0.3 (2021-11-14)

 		
 0.0.2 (2021-10-08)

 		
 0.0.1 (2021-10-08)

 		
 Documents

 		
 Meeting minutes

_static/plus.png

_static/file.png

_static/minus.png

